45 Minute session overview

General

SLIDE #1

· Brief history of my work, including the games I have published.

· My name is John Diamond, CEO and lead developer of COR Entertainment.

· I am here to talk to you about open sourced gaming, and as I understand, this is a first for POSSCON – so I hope you all find this informative, or at the very least entertaining.

· We can keep this fairly interactive, so if you have a question stop me along the way and feel free to ask.

· I'd first like to thank Todd Lewis and everyone @ POSSCON for inviting me and setting up such a wonderful convention.

· A little background about COR - 

· COR was formed originally in 1999 by a group of 3 amateur game developers who shared a common interest in first person shooters.

· We released several titles based on the open source code released by Id Software,  the first being Alteria, a game that was somewhat unique at the time, combining elements of role playing games and first person shooters. 

· CodeRED: Battle for Earth was released in 2002, followed by the Martian chronicles in 2003.

· Following the release of the Martian Chronicles, the other two members left due to personal reasons.

· It was at this time that I began brainstorming a new project called Alien Arena, which was to be an online deathmatch game in which players could choose characters based on famous movie aliens.  

· As the project gained momentum, several other developers joined.

· COR was officially incorporated in 2006.

· At this time we now have four main developers, with a number of others who make frequent contributions, mostly code and porting work, and bug fixing, among other things.  

SLIDE #2

· Alien Arena 

· Alien Arena is our primary, ongoing project which was built using open source code, not just from id Software but from a variety of sources, which is something I will touch upon later.

· Alien Arena's first release was a beta in 2004, with a handful of levels and characters, some changes in the way weapons fired and some minor engine improvements.  The game only ran on windows at the time.

· By 2005 we had ported the game to linux, assisted by Shane Bayer, who was also responsible for porting our early game, Alteria.  Shane had volunteered in both cases because of his interest in open sourced gaming. 

· Since then Alien Arena has gained a bit of popularity, it's been featured in a number of magazines, even PC Gamer several times, and has been downloaded over 2 million times over the last 7 years.

· We currently stand at version 7.51, released a few weeks ago.

· The game itself has evolved considerably, with major changes to the rendering and sound engine(being nearly completely rewritten).  We added vastly improved lighting, texturing, model format(skeletal), ragdoll physics, Opengl  shaders, better water effects, and on and on.  I will talk more about the specifics later as well as in my 2 hour workshop on friday @ 9:45

· To demonstrate the evolution, I'd like to quickly run through a few slides, which focus on how the characters are rendered so you can see how the engine changed over the years.

· SHOW SLIDES 3-10(describe)

· Along the way we also improved the performance tremendously with a number of optimizations, as well as making the game play better over a network or the internet to give the end user a smooth and satisfying experience.

· Currently we are continuing to work on improving rendering speed as well as a brand new GUI interface and a prototype for a game scripting language that will make it much easier to modify elements of the game and hopefully make the engine more appealing for other projects to use. The more projects using the engine, the more contributions and improvements it will likely receive, which is one of the great things about being open sourced.

SLIDE #12

· Id Software's release of engine sources under the GPL, and it's influence on open source gaming.

· As I mentioned we based our engine on the source code released by id Software, and there are a  great number of other open source games and engines that did the same. 

· There are at least a dozen or more notable game projects that are continuing be developed and have achieved a good amount of popularity, and some are of excellent, near commercial quality.  

· I think it's interesting that id Software itself has released it's own free version of Quake 3(Quake Live).

· They certainly took notice of the popularity of the games that were spawned from their sources, and I think wanted in on the action of the freeware market.

· Id has always been a bit of a pioneer in how they released and marketed their games, if you remember the way Wolfenstein3D, Commander Keen, and Doom were released as a portion of them being shareware, and consumers buying the other episodes if they liked it.

· While they certainly weren't first gaming company to open their engine source, they were probably the most notorious due to their engines being on the cutting edge of technology.

· Because of id releasing their code, there are now a number of engines built from these sources that make excellent modern cross platform gaming solutions such as Darkplaces, Qfusion, the Icculus engines, and our own engine, CRX.

· So you can see that they have had a far reaching and positive impact on open source gaming.

· You really just cannot talk about open source gaming without mentioning id, even though they are primarily confined to the first person shooter genre, a number of the games built from this branch out in to other areas.

SLIDE #13

· The Advantages of Open source gaming

· One of the most important aspects of open sourced gaming, is the ability to attract interest to your project because of it's open nature.

· I think that as long as your idea and project are of decent quality and organization, you'll inevitably attract people who will want to contribute, play the game, or join the community. 

· This can really help your project out both long and short term, for example:

· When I began considering implementing a skeletal model format, a coder from another open source project contacted me and told me he was thinking of writing a new model format, and wanted my input on some things that it would include.  

· When it came time to actually do the code work and massage it into my engine, he very graciously offered his help when I would get stuck, and prod me along in the right direction.  

· When we got to the point of adding ragdolls he again offered his help and solved a number of my bugs.  So you can see there often exists a certain comraderie among open source game developers.

· Long term, the more interest and activity a game's community has, the longer the project's lifespan will be.

SLIDE #14

· Despite the advantages....

· Open source game projects face a number of challenges, both on the technology side as well as the artistic.  

· When it comes to technology, keeping up with commercial games can be very difficult.  In our case we started with an engine that was already a generation behind, but, there were a lot of good open source examples and solutions that we could use as a guide to make advancements. 

· Of course it wasn't always as easy as cutting and pasting code.  Some improvements took years to get right.

· The good news is, you don't have to start out a generation behind anymore, as a number of open source engines have done a great job of closing the technology gap.  You don't have to reinvent the wheel, unless you want to, which is also perfectly fine.  There's a certain reward from “doing it yourself” so to speak.

· Part of this catching up is because advancements in gaming technology have sort of hit a bit of a plateau.  

· The advancements through the 90's were particularly impressive, going from 2D, to 2.5 faked 3D of  Doom, Wolfenstein and others, to full 3D and use of OpenGL and DirectX for rendering.  

· As Opengl and DirectX advanced, so did the games, and the technology continued to improve, with per pixel lighting, shadows, and faster rendering.  By 2004 the open sourced engines were lagging far behind their commercial counterparts.

· But the evolution has now slowed, allowing open source applications to catch up somewhat.

· Another reason is often times when one open source game engine creates a feature, a number of others will learn from it, and port it to their game engine, almost like a domino effect.  

· This kind of thing will go back and forth, causing a type of of acceleration effect at times, that makes the technologies advance far more quickly than other environments where information is not shared.  

· Open source examples really allowed us to improve our rendering technologies.

· We started with an engine that was originally written in 1997, so there were quite a few things that needed to be changed to make the game look more modern and run faster on increasingly complex geometries.

· One of the first things we did was rebuild the rendering foundation to be more efficient, replacing the old, open ended glBegin and glEnd commands with compiled vertex arrays and later on, vertex buffer objects, as well as reorganizing some things so that items such as static meshes weren't being rebuilt on every rendered frame.

· We also had to improve the lighting, which meant learning about and using the OpenGL shading language to render per-pixel self-shadowing and specular highlights.  It also meant writing a shadow system using shadow mapping and blurred stencil volumes.

· We replaced the sound system using OpenAL, and we integrated the ODE physics engine.

· We really couldn't have done this without well documented open sourced examples, online, in books, and precedents set in other open source engines.  

· It always helps to have a good template, and it's vital to repay the open source community with your own.

· It is very important to document your code so that others can use it in their engines, and this can lead to improvements in your own game engine.

· Outside of technology, game art has always been problematic in open sourced games.  Even games that contain quality artwork have issues like consistency.  You see a lot of games that look like cobbled, scavenged art, but as a project matures, generally these problems get solved as art gets continuously replaced in the project, something you don't often see occur in commercial games with the same issues.

· Ideally you want to have one or two talented artists who stick around the project's duration and come up with a solid, unified style.  That isn't always possible. 

· Some times this is because of the licensing of open sourced software.  Many artists aren't willing to release their art in a manor that allows it to be modified, so you might have to make a choice between making your game fully open, or dual licensed, with the engine being open and the game data being closed or under some other restrictive license.  

· There are debates whether or not that is ethical, or even legal(though Richard Stallman himself has said it is acceptable), or if art can even be open sourced(I personally think it can, in some cases).

· In the end you have to decide what your goals are, and how it all fits together with the openness of your project.  

SLIDE #15

· Using open source tools to create game content, and supporting those formats in a gaming engine.

· One thing that will often attract people to your project is making it accessible and easy to contribute to by using open source or free tools to create game content or compile code.  In linux, this isn't much of a problem, since generally you're going to have a makefile or codeblocks project or something else similar to assemble everything so that the compiler knows what to do.  

· In Windows there are also a variety of free programs, including free versions of Visual Studio. 

· Using a free program such as Blender, or Gimp will make it easier for people to use and improve your game assets if you wish them to do so.  

· It might also be a good idea to write your own editing tools for any other formats that aren't supported by free tools, such as if you need a level editor, etc.  Tools like this that make it easier to contribute are a must if you want not only to attract developers, but also have a community around your game that makes custom content.  

· The more interactive the community is in this fashion the more longevity and popularity the game will achieve.

· Release early, often, organize, keep core members, etc.

· The phrase “Release early, release often” is sometimes looked at as a negative, but in open source gaming it can also be a positive.

· You do have to weigh the notion of possibly turning players off by putting something out that is not finished, or very polished against also getting the project's name out there, and generating interest in it.  It's a fine line, to be sure.

· My personal opinion and experience is, don't release it until your at least confident that it's playable, and polished to the point where you don't feel an immediate need to correct or change something.  Remember, gamers can be pretty fickle, and if your project isn't ready for public consumption, you can find it buried under the weight of negative reputation.  

· This can be a particularly important issue for multiplayer games.  It's the whole chicken vs the egg theory.  Far too often people won't play the game unless well, people are actually playing the game.  So how do you get people playing if nobody is playing?

· Early on, it's better not to worry about having a large playerbase, and focus more on development, and attracting developers to help you.  A small but active community can help with testing gameplay and give you valuable feedback on your progress.

· Once the game has reached a more polished and playable state, then think about getting that big, hyped up release out that brings in the large cluster of players.  

· Keeping all of this organized and well mapped out will be a major plus.  It also helps to keep your development team organized as well.  I personally believe that a small, core group of like minded developers will be able to keep a game project moving in a positive direction.  

· Far too many projects I have seen that have had large teams wind up being a huge mess.  It's better to keep the center tight, and those people can accept or reject contributions, patches, bug fixes etc.  This also keeps developers from stepping on each other's work by accident.  If you have 15 people with access to your subversion or git repo, you're going to likely wind up with quite a few bugs and problems.

· Addressing the game as a whole is vital.

· While a major part of creating a game is creating a pleasing visual and aural appeal, there are also quite a few other areas that you need to focus on.  

· Game play is paramount, no matter how good your game looks or sounds, if the game play is sub par, it isn't going to be successful.  

· You have to consider things such as replayability factor, immersion, challenge, mental stimulation, or competition.  

· I can't tell you exactly what makes good game play for your specific project, that is something that varies greatly genre by genre, and there are literally millions of differing opinions.  Testing and listening to player feedback will greatly help you with this.

· With Alien Arena we use the community's input as a very valuable too.  Many ideas and concepts were born from them.  Health and rewards systems, scoring, map and weapon ideas and much more.

SLIDE #16

Conclusion

· I'd like to now talk about a few more generalized points about the gaming industry and how open source fits in, as well as some other insights.

· The gaming industry, including open source, can be fairly judgmental, but you need to listen to the critics.

· No matter how good you think your project is, there is almost always room for improvements.  

· There are also people that are going to be overly critical, it's the same as any other artistic endeavor.  Gotta have a thick skin and use the criticism to find valid things to improve.

· There are going to be those to want to contribute through criticism, don't take that as an insult.  Most people want to help because they like your project and/or open source.

· Turn your hobby into a profit, ways an open source game can make money.

· Open source games don't have to be just a hobby.  There are ways to make them into profitable endeavors.  

· You can set up donation pages.

· You can bundle other software packages with yours that will pay you to do so.

· Or you can sell advertising space in your game itself, website.  

· You can give away part of the game and charge for other portions or content.  

· There are definite ways to treat it as a business and make it something more than just a hobby.

· The open source method is working for gaming.

· When I first started working on open sourced games there were only a handful, now there are so many that are very close to commercial quality, I think that some of the commercial developers have taken notice and maybe changed their philosophy.

· More and more major developers are open sourcing their engines, or at the very least providing useful development kits and free engine licenses.  

· I think they see how the open sourced games attract a long lasting and active community based on being able to modify and contribute to the games and want to emulate that in some fashion.

· You're not gonna find many that will do this until it's actually released, and maybe out for some time, but it's definitely a step in the right direction.

· Gaming is one of the largest entertainment industries in the world, even bigger than the movie industry, and I really think that there is a bright future for open source to be a growing part of it.

· Ok – that's it – feel free to ask me any questions here, or stop by my booth, and I will have a two hour workshop that will discuss in detail how some of the game technologies work.

Questions/answers session at end(time?)

